Unique Applications of microwave VNA technology

Ben Maarleveld - Sales Manager T&M - Rohde & Schwarz Benelux B.V.

Reaction to terrorist incidents – security measures increased strongly

Traditionally metal detectors and X-Ray luggage scanners

New threats since 9/11 created a demand for new technology: **Person security scanners**

Smiths detection eqo™

Electronic scan 24 GHz (CW)

Pax rotates, arms up

L3 communications **ProVision**®2

Rotating antennas 24 - 30 GHz

Single posture, arms up

Electronic scan, multi-static 70 - 80 GHz

One or two postures, arms down

Safety of millimeter-wave security scanners

Millimeter Wave Safety

Millimeter wave technology emits thousands of times less energy than a cell phone transmission. A typical cellular phone transmits

orders of magnitudes more output power

than Security scanners

2008: R&S vision of a modular security scanner

In modern

Vector Network Analyzers

microwave is a core technology

up to 100 GHz and higher

Basic principle of microwave scanner – Single channel block diagram

Principle of Multistatic Microwave Imaging

- A set of multiple transmitting and receiving antennas define the imaging array
- This array is used to measure the reflectivity of the "device under test" with respect to each Tx-Rx-combination
- I Image reconstruction:
 - $Voxel(x, y, z) = \sum_{N_f} \sum_{N_{rx}} \sum_{N_{tx}} s(tx, rx, f) e^{j\frac{2\pi f}{c_0}(r_{tx} + r_{rx})}$
 - "Correct the collected data of every transmitter-receiverpair by their free space propagation for all frequency points and add everything up."

2008: first experimental test setup, two scanning antennas

Operator (Screener)

Passenger (Pax)

Scanner

Illuminating signal coming from a single antenna

Operator

(Screener)

Passenger (Pax)

Illuminating signal coming from a single antenna

Operator

(Screener)

Passenger (Pax)

Illuminating signal coming from a single antenna

Operator

(Screener)

Passenger (Pax)

Illuminating signal coming from a single antenna

Operator

(Screener)

Passenger (Pax)

Illuminating signal coming from a single antenna

Operator

(Screener)

Passenger (Pax)

Module integration and testing – using a chip set designed by Infineon

2010: first fully electronic demonstrator

- 4x4 Cluster
- Scan time 0,5 s
- Heat pipe cooling system
- First images of living humans

World's first images of Humans in E-Band (60 -90 GHz)

System Block Diagram

Thousands of fully synchronized Tx and Rx channels

QPS technical data

- 70 80 GHz Operating frequency
- 94 Rx and Tx antenna's per module
- 32 Rx/Tx modules per scanner
- 3008 Tx and 3008 Rx antennas in total
- > 30 dB Image dynamic range
- I < 2 mm High resolution</p>
- I msec range scan time

94 Transmitters vertically

QPS System Integration

System integration

LAMOT

Automated Threat Detection by powerful algorithms

- Automatic detection of threats/objects in composite microwave images
- Detection software visualizes threats on abstract avatar
- Operator never sees raw images; fulfilling privacy and security requirements

Automated threat detection

Same technology – another new application

Automotive radar performance behind radomes and bumpers

Right now there are many different approaches for radar sensor integration. Automotive radar operates in same 70-80 GHz frequency range

Same technology – another new application Car radar performance

Radomes may cause angle errors!

- Rough estimate: Target is 200 m away -> angle error is 1° in broad sight -> Lateral detection error = 200 m x tan 1° = 3,5 m
 - → The radome is a highly critical part!
 - → Quality check required, especially at the end-of-line test?

Measurement principle

Transmission measurement

- Measures permeability of radome or bumper material
- I The external transmit antenna is switched on and the received power level is measured at each of the antennas in the line.

Measurement principle

Reflectivity measurement

- Measures degree of reflection and reflection pattern of radome or bumper material
- For reflection measurement, each transmit antenna is switched on sequentially.
- I The complex wave quantities are measured coherently at each single receive antenna.

Examples of measurement results

Differences in permeability of painted plastic bumpers

Bumpers usually have metallic paint

Reflectivity/Permeability of car bumper paint (linear scale)

Examples of measurement results

Big differences in inhomogeneity of radomes

Rohde & Schwarz competence – R&D and Manufacturing

100% designed and produced in Germany, based on R&S IP's

Thanks for your attention!

